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Abstract
Video question answering (VQA) is a challenging task that requires models to generate answers by using both information
from text and video. We present Task-oriented Human Attention Video Question Answering (THAVQA), a new VQA dataset
consisting of third- and first- person videos of an instructor using a sewing machine. The sewing task is formalized step-by-
step in a script: each step consists of a video annotated with German language open-ended question and answer (QA) pairs
and with human visual attention. The paper also includes a first assessment of the performance of a pre-trained Multimodal
Large Language Model (MLLM) in generating answers to the questions of our dataset across different experimental settings.
Results show that our task-oriented dataset is challenging for pre-trained models. Specifically, the model struggles to answer
questions requiring technical knowledge or spatio-temporal reasoning.
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1. Introduction
This paper presents a new VQA dataset based on demon-
strating basic sewing machine operations. To our knowl-
edge, THAVQA1, which is also annotated with human
visual attention, is the first task-oriented VQA dataset in
German language.

The dataset building is a first step in the larger project
aimed at developing an AI-assistant for a sewingmachine
workshop held at the Technische Hochschule Augsburg.
This AI-assistant would support students when using
sewing machines for the first time. For example, this
could mean answering questions about basic machine
settings or explaining fundamental sewing skills. Our
dataset poses unique challenges for VQA models and is
almost unique in the state-of-the-art VQA datasets since
it is user- and task-oriented: the questions collected are
those that a real user would ask for help while using the
sewingmachine. The process of operating the sewingma-
chine was decomposed in a script into steps and sub-steps
that were recorded and on which questions and answers
were annotated. Specialized knowledge of the process
and understanding of spatial and temporal relationships
is required for answering the questions collected. In ad-
dition, the limited visual variety of the video scenes and
the specialized language and dictionary challenge the
models for VQA.
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Annotating human attention in the video inputs of
VQA models has recently been shown to improve their
performance in user- and task-oriented datasets [1, 2]. In
our dataset, the workshop instructor’s eye gaze has been
used as a proxy for human visual attention. The concept
behind it is that visual human attention integrated as
input into models for VQA can help the model distinguish
between video frames, especially in datasets in which
recorded scenes are very similar to each other as there
are few participants and staged events.

Our paper also provides a first assessment on the VQA
performance of the pre-trainedMLLMGemini 1.5 Pro2 on
THAVQA. Indeed, new releases of LLMs, such as Gemini
1.5 [3] but also GPT-4 [4], Llama 2 [5] or Claude 3 [6],
now allow for visual inputs, making it possible to perform
VQA tasks using pre-trained models directly.

To sum up, this paper presents (1) A new dataset with
third-person videos of an instructor operating a sewing
machine and first-person videos annotated with visual
human attention, QA pairs in German, a script in German
of the steps required to operate the machine; and (2) An
evaluation of the performance of a pre-trained MLLM
on generating open-ended answers from questions and
videos of our dataset.

2. Related Work
The majority of state-of-art VQA datasets portray com-
plex scenes composed of many events and participants,
gathered using either synthetic simulation data or data
sourced from movies, social media, video games or the
web [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. VQA mod-
els are then tasked with answering questions about the

2https://deepmind.google/technologies/gemini/pro/
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Figure 1: Video frames of the third-person (a) and first-person view with the human attention annotated as a circular outline
(b) and an attention map (c).

videos’ content. This requires a wide variety of reasoning
abilities such as reasoning about spatial and temporal
relationships, casual inference or relationships between
actions and objects [16, 18].

In contrast, research on task-oriented VQA, where
question answering supports users with tasks such as
industrial assembly and disassembly [1, 2] or collabora-
tive machine operation [19], is relatively limited. Simi-
larly, the setting of our dataset, the tutorial on sewing
machine operation, is task-oriented and requires special-
ized knowledge, which makes it difficult for pre-trained
MLLMs to generate satisfactory answers from only their
inherent knowledge. In line with the task-oriented ap-
proaches of Ilaslan et al. [1] and Gao et al. [10] we adopt
both a fixed third-person view (TPV) and the first-person
view (FPV) of the workshop instructor during the video
recordings. To our knowledge no other German datasets
exist specifically for task-oriented VQA.

Human and model attention in VQA seem to be related,
as human visual attention has been shown to be corre-
lated to model attention for VQA [20] and differences in
their attention can be used to explain disagreement in
VQA [21]. Human attention has been modeled explicitly
by eye [1] and hand tracking [2] and included into the
input of VQA models in order to highlight important
parts of the videos that correspond to the user inten-
tions. These annotations of human visual attention have
been shown to improve VQA performance, even when
using pre-trained encoders without specific fine-tuning
to extract features from the visual data [1]. With these
intuitions, we annotated the FPV videos in our dataset
with human visual attention.

3. The Dataset

3.1. Dataset Structure
The setting of our customVQA dataset is the introduction
to sewing machine operation presented in a tutorial form.
We based the contents on a sewing machine workshop
held at the Technische Hochschule Augsburg as part of

an elective module on Smart Textiles at the Faculty of
Design. We first structured the contents and detailed
instructions of the workshop in a script, which primar-
ily served as a template for video data collection. The
script contains seven larger tasks, such as setting up the
machine and performing different kind of sewing oper-
ations on different kinds of fabrics, each with three to
eight smaller sub-steps (35 in total), which in turn require
multiple actions to be performed. The script’s contents
are available as part of the publicly accessible dataset (see
Online Resources).

3.2. Video Data Collection
We recorded video data of the workshop being performed
by the instructor. All videos depict a regular consumer-
grade sewing machine being operated by the instructor
at a table (see Figure 1). The video background is visu-
ally complex and reflects the real workshop environment.
We also extended the video dataset to two student par-
ticipants using exactly the same recording procedure
(same environment, perspectives and script steps). The
extended dataset, containing a total of 48 minutes of
footage, is available on request. To reduce the chance
of errors in the video demonstrations negatively impact-
ing VQA performance, we rely exclusively on the expert
demonstrations for the scope of this paper.

Two different camera perspectives were recorded si-
multaneously: a static TPV looking over the instructor’s
left shoulder towards the machine (see Figure 1a) as well
as a dynamic FPV of the instructor (see Figure 1b). For
recording the FPV we used the Tobii Pro Glasses 3 eye
tracking glasses3 and collected the instructor’s eye gaze
fixations for the entire duration of recordings. We split
the recordings (TPV and FPV) into the 35 sub-steps and
manually synchronized them across both perspectives.

We chose two different types of annotations to repre-
sent the human attention in FPV. First we annotated the
2D-location of the instructor’s eye gaze via a red circular

3https://www.tobii.com/products/eye-trackers/wearables/
tobii-pro-glasses-3
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outline (FPVC) (see Figure 1b), representing a bounding
box for the current area of human attention, similar to
the annotation style of Ilaslan et al. [1]. We also created
a second annotation layer, attention maps (FPVA), where
each pixel is masked with increasing intensity with in-
creasing distance to the gaze fixation point (see Figure 1c).
Although this masking may obscure important informa-
tion in the video, it clearly restricts the model’s visual
input to the human focal point.

3.3. QA Pair Collection
We recruited 10 German speaking crowdworkers on the
Prolific4 platform to formulate open-ended question-
answer pairs on the recorded videos.5 Crowdworkers
were shown a random video in the TPV that represents a
sub-step, together with the corresponding sub-step in the
script. Giving annotators access to the script’s contents,
a description of the actions performed on the sewing
machine by the instructor (see Section 3.1), did cause the
resulting QA pairs to be less focused on the contents of
the video and more focused on the contents of the tex-
tual descriptions. However, we still opted to include the
textual context, in order to encourage the use of correct
technical language by the non-expert annotators and to
ensure a better understanding of the videos’ contents.
The resulting QA pairs were then manually annotated
by reasoning type (see Figures 2-3 in the Appendix):

• knowledge-based reasoning when questions need
technical knowledge to be answered;

• spatial reasoning when locations or directions
are to be described;

• temporal reasoning when questions are related
to the sequential order of actions;

• perception-based reasoning when the answer can
only be retrieved by visually inspecting the video.

The categorization of QA pairs into these reasoning types
is often ambiguous, especially when differentiating if a
question pertains to knowledge-based reasoning as op-
posed to spatial or temporal reasoning. In fact most
knowledge about how to sew is based on spatial and tem-
poral information. For example the question of “What
happens after winding the bobbin?” is temporal in nature
but could also be answered from the model’s inherent
pre-training knowledge instead of extracting temporal in-
formation from the video input. We therefore approached
the labeling process of QA pairs as follows:

• If a question can be answered by locating objects
in the visual input it is categorized as requiring
spatial reasoning.

4https://www.prolific.com
5Crowdworkerswere offered an approximate hourly reward of 11.80€
including bonuses.

• If a question can be answered by observing and
relating the video input over multiple frames it is
categorized as requiring temporal reasoning.

• If a question cannot be reasonably answered from
the video input but rather requires using pre-
training knowledge it is categorized as requiring
knowledge-based reasoning.

This approach still leaves some amount of ambiguity, for
example specialized knowledge about sewing-machine-
specific terms may be required in order to identify the
object, for example “the bobbin”, to be located in a QA
pair about temporal-based reasoning. For the QA pair
annotation it was therefore decided if a question cor-
responds to a single reasoning type or if it should be
assigned to multiple reasoning types.

The different reasoning types also give an indication
of which dataset modality is required for the model to
answer the dataset’s questions. Strictly knowledge-based
questions for instance primarily test the model’s pre-
training knowledge and are therefore not expected to
profit from a visual input modality. Spatial and temporal
questions both require the model to extract additional
information from visual inputs. For spatial reasoning, a
sequence of video frames might help with occlusion or
depth perception, however, in most cases a static image
will offer the required context for a spatial question to
be answered. Temporal reasoning requires the model to
relate visual information over a span of multiple frames,
making video context a requirement to answer temporal
questions.

Additionally, we discarded QA pairs that were either
factually incorrect, not intelligible or ungrammatical.

3.4. Descriptive Statistics
In total the video recordings span 16 minutes and 24
seconds across the TPV and FPV with a mean duration
of 14 seconds for single sub-step-related video clips.

Since the dataset’s scenario only involves sewing ma-
chine operation, we expect limited variability within
the contents of the videos. This might mean that the
video data offers little usable information to a pre-trained
MLLM. We quantified this lack of visual variation as the
semantic similarity of video frames within a single video
clip related to one of the 35 sub-steps. We obtained the se-
mantic similarity scores by randomly sampling 20 frames
for each clip and transforming them into embeddings us-
ing the CLIP model [22]. We used cosine similarity [23]
as the distance metric and calculated the mean of the sim-
ilarity matrix between all 20 embeddings. We compared
this semantic similarity for the TPV and FPV, including
both types of annotations for human visual attention (see
Table 1). As expected, the frames within video clips are
very similar, with the static TPV exhibiting the largest

https://www.prolific.com


Table 1
Comparison of the mean semantic (cosine) similarity [0, 1] of
video frames within clips related to single sub-steps.

Perspective Mean Semantic Similarity

TPV 0.97 ±0.01
FPV 0.93 ±0.02
FPVC 0.93 ±0.02
FPVA 0.94 ±0.02

Table 2
Mean statistics over single questions and answers as well as
across all questions, answers and the entire dataset.

Tokens Lemmas RTTR

Single questions 9.79 ±3.0 9.12 ±2.43 2.88 ±0.45
Single answers 12.58 ±8.74 10.45 ±5.83 2.99 ±0.85
Questions 1519 286 9.34
Answers 1950 371 9.94
Total 3469 502 10.31

semantic similarity between video frames. The FPV an-
notated with attention maps displays the second highest
similarity score, possibly due to the fact that large por-
tions of the frames are masked and the position of the
focal point is not altering the embedding vector signifi-
cantly. We do not find a difference between the similarity
scores of the regular FPV and the FPV including the cir-
cle annotation of the eye gaze. Overall, this indicates
that a pre-trained MLLM may struggle to extract and
meaningfully interpret human attention information.

After manually filtering incorrect or unintelligible QA
pairs and annotating the reasoning types we obtained
a total of 122 QA pairs, with 1 to 9 QA pairs per sub-
step of the script. Additionally, we prompted Gemini
1.5 Pro to answer the 122 questions, obtaining a total
amount of 2562 answers, further details are described in
Section 4. We found 96 QA pairs to pertain to knowledge-
based reasoning, with 33 QA pairs requiring spatial-, 15
temporal- and 4 perception-based reasoning (see Figure 3
in the Appendix). A total of 24 QA pairs were annotated
with more than one reasoning type due to ambiguity. All
but one of these pairs was assigned the label ”knowledge-
based reasoning” in combination with at least one more
reasoning type.

Additionally, we analyzed the diversity of QA pairs in
terms of token and lemma counts as well as Root Type-
Token Ratio (RTTR) calculated using the default param-
eters of Shen [24] (see Table 2). We calculated the de-
scriptive statistics as a mean over singular questions and
answers as well as across all questions, answers and the
entire dataset. The questions and answers provided by
the human annotators are largely brief and concise, re-
sulting in low token and lemma counts alongside a low

RTTR. When extending the calculations to all questions
and answers or the entire dataset, repetitions become
more frequent, evidenced by a higher RTTR.

4. Methodology
For the evaluation we selected Gemini 1.5 Pro6 as an ex-
ample of pretrained MLLMs. Gemini 1.5 Pro is part of a
new family of highly-capable multi-modal models, Gem-
ini 1.5, and it is a sparse mixture-of-expert Transformer-
based model. Due to its is long input context of up to 10
million tokens it is capable of processing video inputs at
a high resolution and sampling rate [3], giving it a good
chance at extracting detailed visual information. We ac-
cessed Gemini through the Vertex AI inference API7. We
prompted Gemini to answer the questions formulated by
human annotators. To evaluate the model’s performance,
the answers generated by Gemini are manually compared
against the human gold-standard answers. Two human
annotators gave binary labels of whether or not themodel
answer could serve as an acceptable replacement for the
human answer. The two annotators were trained by tag-
ging part of the dataset together. Given the clarity of the
binary annotation task, they proceeded to annotate the
remaining part of the dataset by themselves. Instances
where the model refused to answer due to a lack of in-
formation were labeled as not acceptable. For the final
evaluation score we expressed the ratio of acceptable an-
swers to the number of total answers as binary accuracy
(see Table 3).

To evaluate the impact of different inputs (FPV, TPV,
human visual attention, script) on the VQA performance
of Gemini we constructed seven ablation settings:

First, we prompted the model with the questions and
did not include any other context in form of textual in-
formation or videos. We refer to this ablation setting
as the naive baseline. We expected this configuration to
serve as the bottom limit of model performance, relying
exclusively on the model’s inherent knowledge gathered
from pre-training.

For the second ablation scenario, we included the in-
structions for the sub-step of the script any given ques-
tion was formulated for. These instructions do not only
aid with knowledge-based questions but also contain
important descriptions about the temporal order and
spatial location of actions. Excluding perception-based
reasoning, we therefore expected this ablation setting
to represent the upper limit of model performance. As
such, this ablation setting is referred to as the text-only
reference model.

6https://deepmind.google/technologies/gemini/pro/
7https://cloud.google.com/vertex-ai/generative-ai/docs/
model-reference/inference

https://deepmind.google/technologies/gemini/pro/
https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference
https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference


Table 3
Mean binary accuracy of Gemini answers per ablation setting and reasoning type.

Ablation Knowledge Spatial Temporal Perception All reasoning types

Naive baseline 0.36 0.61 0.29 0.25 0.42
TPV 0.42 0.61 0.38 0.75 0.48
FPV 0.43 0.71 0.27 0.67 0.5
FPVC 0.4 0.71 0.27 0.58 0.48
FPVA 0.43 0.68 0.29 0.5 0.49
Text-only reference model 0.89 0.76 0.56 0.08 0.79
Multimodal reference model 0.87 0.84 0.71 0.75 0.84

Third, we included a FPV video clip corresponding to
the given question along with the sub-step instructions.
We refer to this model as the multimodal reference model
and expect it to perform similarly to the text-only refer-
ence model with the additional ability to reason about
perception-based questions. If satisfactory answers can-
not be generated from the model’s pre-training knowl-
edge, we would expect both reference models to outper-
form the naive baseline significantly.

In the remaining four ablation settings, we included a
single video clip related to the given question with every
prompt. Each ablation setting used video clips, either
from a specific perspective (TPV or FPV ) or a specific
type of visual attention information, either the red circle
(FPVC) or the attention map (FPVA). For these settings we
did not include any other textual information, meaning
all information present in the answers must have been
inherent to the model or extracted from the video.

We repeated the same prompt for every question in
every ablation setting three times to account for varia-
tions in the model’s output. This resulted in 366 model
responses per ablation setting, a total of 2562 answers.
Additional information about the model prompts is pro-
vided in Section E of the Appendix. Since THAVQA
is imbalanced towards knowledge-based questions, we
reduced their amount by randomly sampling knowledge-
based questions. We chose the sample size with a margin
of error of 5%, a confidence of 95% and estimated the
proportion maximally at 0.5. With finite population cor-
rection we therefore reduced the amount of knowledge-
based model answers from 210 to 143 per ablation setting.
Model answers including spatial reasoning accounted for
99, temporal reasoning for 45 and perception-based rea-
soning for 12 model answers per ablation setting. This
means that the evaluated model answers were still im-
balanced towards knowledge-based reasoning.

5. Evaluation
We calculated the binary answer accuracy (see Section 4)
for every ablation setting and reasoning type as shown in
Table 3. To test for statistical significance we calculated

𝜒2 in a contingency table of the binary “acceptable”-labels
between every pair of ablation settings for every reason-
ing type. We accepted 𝑝-values < 0.05 as statistically
significant.

Both referencemodels outperformed the naive baseline
significantly in terms of total accuracy over all reasoning
types (4.28𝑒−25 ≤ 𝑝 ≤ 4.57𝑒−19). This confirms that the
chosen task-oriented VQA scenario of sewing machine
operation was specialized enough, such that Gemini was
not able to provide satisfactory answers using only its
pre-training knowledge. For perception-based reasoning
questions, no significant difference in accuracy between
the naive baseline and the text-only reference model was
found. However, both were outperformed significantly
by the multi-modal reference model (0.004 ≤ 𝑝 ≤ 0.04).
We can therefore conclude that the model was generally
able to extract meaningful information from the video
inputs. Across all individual reasoning types other than
perception-based questions, no statistically significant
differences between the performances of the text-only
and multi-modal reference model could be observed, in-
dicating that the textual instructions included enough
spatial and temporal information to make the additional
video input redundant.

All video-only ablation scenarios (TPV, FPV, FPVC,
FPVA) across all individual reasoning types except for
perception-based reasoning were outperformed by both
reference models, and did not show significant advan-
tages over the naive baseline. Given that even the multi-
modal reference model was not able to significantly im-
prove upon the text-only reference model, these results
were to be expected. Similarly, the video-only ablation
scenarios were able to improve over the accuracy of the
naive baseline and the text-only reference model with
respect to perception-based reasoning, although these
results were above or close to the cutoff for statistical
significance (0.004 ≤ 𝑝 ≤ 0.4).

More importantly however, for any individual reason-
ing type, annotating human attention via both annotation
types (FPVC and FPVA) did not significantly improve ac-
curacy in comparison to the regular FPV or TPV videos.
This confirms that the pre-trained MLLM was in fact



not able to meaningfully interpret the human attention
annotations without fine-tuning.

Overall, the experimental setup was suitable to re-
veal differences in VQA performance for the different
forms of video inputs and reasoning types. In fact, the
task-oriented nature of THAVQA was challenging for
a pre-trained MLLM such as Gemini: while the model
was often able to extract enough information for ques-
tions requiring basic perception, this was not the case for
questions involving complex reasoning about temporal
or spatial dimensions that are peculiar of a procedural
task such as sewing. For these types of reasoning the
model achieved its best performances when detailed tex-
tual information related to the corresponding sub-steps
was included in the ablation scenarios. Besides the na-
ture of the questions formulated, maybe the videos are
also challenging for the model: we can hypothesize that
this is due to the high semantic similarity between the
video frames, as we showed in Section 3.4.

5.1. Qualitative Analysis
If no video inputs were included for perception-based
questions, such as retrieving the fabric’s color, Gemini
mostly pointed out that it was lacking the information
required to provide an answer. Additionally, including
video inputs seemed to help themodel disambiguate ques-
tions. For example, the naive baseline misunderstood a
question about removing excess threads from the work
piece, interpreting it as referring to undoing entire un-
wanted seams. With video inputs, the model was able to
infer that the question was simply related to trimming
long threads hanging off the fabric. Finally, we found
that video context seemed to encourage the model to
provide descriptions of spatial relationships, even when
this is not strictly required to answer the question.

Overall, we observed a positive effect of video inputs
on the model’s answers when compared to the naive
baseline. Examples are provided in the Appendix (Fig-
ures 5- 7).

6. Conclusion
We provide a new task-oriented, German-language VQA
dataset on demonstrations of sewing machine operation
with open-ended human QA pairs and human visual
attention: THAVQA. We then compared the VQA per-
formance of Gemini 1.5 Pro on THAVQA varying the
model inputs. We found that the task-oriented scenario
of THAVQA was specific enough, such that the model
could not rely on only its inherent knowledge to generate
satisfactory responses. The questions contained in our
dataset were over the capacity of the model to reason
about the video data. Combining textual instructions

with a first person video resulted in the best performing
model across all reasoning types of questions.

When looking towards the design of a VQA model
for a future, practical sewing machine assistant, video
inputs could therefore be used mainly to improve the
model’s perception abilities, while a retrieval system for
textual information could provide the necessary special-
ized knowledge.
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A. Online Resources
The dataset, including synchronized video data with an-
notated eye gaze as well as human formulated and model
generated question-answer pairs with reasoning type an-
notations, is available via https://github.com/tha-atlas/
HowDoesSewingMachineWork.git.

B. Crowdsourced
Question-Answer Formulation

Figure 2: The question-answer formulation task as pre-
sented to human annotators.

C. Reasoning Types

Why do you use a zigzag stitch on elastic fabrics?

Warum verwendet man einen Zickzack-Stich bei
Elastischen Stoffen?

(a)

Where is the sewing machine’s built-in thread
cutter located?

Wo befindet sich der integrierte Fadenschneider
der Maschine?

(b)

What does the seamstress check at the end of
the sewing?

Was kontrolliert die Näherin am Ende des
Nähens?

(c)

What color is the fabric in the video?

Welche Farbe hat der Stoff in dem Video?
(d)

Figure 3: Questions requiring knowledge-based (a), spa-
tial (b), temporal (c) and perception-based (d) reasoning.

D. Semantic Similarity of Human
and Model Answers

We also evaluated the similarity between human and
model answers for every ablation scenario as a sentence
BLEU-score [25] and BERT-scores [26] with precision,
recall and F1-score (see Table 4). However, we excluded
these metrics from the main evaluation, since they do
not provide a direct measure for the factual correctness
of the model’s responses. As expected, the reference
model with access to the same textual information that
annotators were using to formulate QA pairs achieves
the highest semantic similarity to human answers.

E. Model Prompts
When including video data in the prompts, we found
that Gemini had to be explicitly instructed to retrieve
information from the video. We therefore also included
information about the types of annotations for human
visual attention in the prompt, where applicable, in or-
der to increase the model’s chances at recognizing the
annotations. Additionally, we added a single few-shot
example of the expected answer format in the prompt,
without disclosing any factual information. We input
the videos at full resolution. According to the Vertex AI
documentation, videos in the prompts are sampled at
one frame per second, with automated changes to the
sampling rate being made in order to improve inference
quality8.

8https://ai.google.dev/gemini-api/docs/prompting_with_media#
prompting-with-videos

https://github.com/tha-atlas/HowDoesSewingMachineWork.git
https://github.com/tha-atlas/HowDoesSewingMachineWork.git
https://ai.google.dev/gemini-api/docs/prompting_with_media#prompting-with-videos
https://ai.google.dev/gemini-api/docs/prompting_with_media#prompting-with-videos


Table 4
Mean BLEU- and BERT-scores (precision, recall and F1-score) between the human gold-standard and the model answers for
each ablation scenario across all reasoning types.

Ablation BLEU Precision Accuracy F1

Naive baseline 4.39% ±4.11% 0.75 0.70 0.72
TPV 6.66% ±9.39% 0.75 0.72 0.74
FPV 6.23% ±7.52% 0.75 0.72 0.73
FPVC 6.45% ±7.99% 0.75 0.72 0.73
FPVA 6.34% ±8.01% 0.75 0.72 0.74
Text-only reference model 13.82% ±16.93% 0.81 0.76 0.78
Multimodal reference model 16.74 ±21.5 0.81 0.78 0.80

You are a sewing machine assistant. Answer
questions about using a sewing machine as
accurately and precisely as possible.
It may be difficult to answer the questions
based on the given context. However, there is
no way to ask follow-up questions.
Therefore, always try to answer the question as
well as possible.

The answer should be concise and directly
related to the question, such as:

Question: How do I ...?
Answer: In order to ..., you ...

The question is:

<question>

Du bist ein Nähmaschinenassistent. Beantworte
Fragen zu Benutzung einer Nähmaschine so ko-
rrekt und präzise wie möglich.
Möglicherweise sind die Fragen anhand des
gegeben Kontexts schwer zu beantworten. Es
gibt jedoch keine Möglichkeit Rückfragen zu
stellen.
Versuche also die Frage stets so gut wie möglich
zu beantworten.

Die Antwort sollte bündig formuliert sein
und lediglich Bezug zur Frage aufweisen, also
beispielsweise:

Frage: Wie mache ich ...?
Antwort: Um ... durchzuführen wird ...

Die Frage lautet:

<question>

(a)

The following excerpt from a manual may be
related to the question:

<instructions>

Folgender Auszug aus einer Anleitung hat
möglicherweise Bezug zur Frage:

<instructions>

(b)

The answer to the question is demonstrated in
the attached video.

<video>

Die Antwort auf die Frage wird im beigefügten
Video demonstriert.

<video>

(c)

The gaze point of a person performing the task
is annotated with a red circle and highlights
important areas of the image.

Der Blickpunkt eines Menschen beim Durch-
führen der Aufgabe ist durch einen roten Kreis
annotiert und weist auf wichtige Bildbereiche
hin.

(d)

In the video, the viewpoint of a person per-
forming the task is masked, thus restricting the
video to the most important area of the image.

Im Video ist der Blickpunkt eines Menschen
beim Durchführen der Aufgabe maskiert, das
Video also auf den wichtigsten Bildbereich
beschränkt.

(e)

Figure 4: The base prompt (a) for evaluating Gemini
1.5 Pro, as well as prompt additions to point at textual
instructions (b), video content (c) and human eye gaze
annotated via a red circle (d) or attention maps (e).



F. Qualitative Analysis

Question: What color is the fabric in the video?

Welche Farbe hat der Stoff in dem Video?

Answer (naive baseline): It is impossible to de-
termine the color of the fabric in a video without
seeing the video.

Es ist unmöglich die Farbe des Stoffes in einem
Video zu bestimmen, ohne das Video zu sehen.

Answer (FPV): The color of the fabric is blue.

Die Farbe des Stoffes ist blau.

Figure 5: Gemini recognizing lacking information for
perception-based questions.

Question: How should excess threads be removed
from the work piece?

Wie sollten die überschüssigen Fäden des Werk-
stückes entfernt werden?

Answer (naive baseline): To remove excess
threads, use a seam ripper to carefully open the
seams and remove the unwanted threads.

Um überschüssige Fäden zu entfernen, verwende
einen Nahtauftrenner, um die Nähte vorsichtig zu
öffnen und die unerwünschten Fäden zu entfernen.

Answer (FPV): To remove excess threads, cut
them off with fabric scissors.

Um überschüssige Fäden zu entfernen, schneidet
man diese mit einer Stoffschere ab.

Figure 6: Video inputs allowing Gemini to correctly
interpret ambiguous questions.

Question: How do I manually insert the needle
into the fabric?

Wie führe ich die Nadel manuell in den Stoff ein?

Answer (naive baseline): The needle can be
manually inserted using the handwheel.

Mithilfe des Handrads kann die Nadel manuell
eingeführt werden.

Answer (TPV): To manually insert the needle into
the fabric, turn the handwheel on the right side of
the sewing machine towards yourself.

Um die Nadel manuell in den Stoff einzuführen,
dreht man das Handrad an der rechten Seite der
Nähmaschine zu sich heran.

Figure 7: Gemini providing un-prompted spatial de-
scriptions when video context is available.
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