
Scalable Query Understanding for E-commerce: An
Ensemble Architecture with Graph-based Optimization

Giuseppe Di Fabbrizio†, Evgeny Stepanov†, Ludovico Frizziero† and Filippo Tessaro†

Abstract
Query understanding is a critical component in e-commerce platforms, facilitating accurate interpretation of user intent
and efficient retrieval of relevant products. This study investigates scalable query understanding techniques applied to a
real-world use case in the e-commerce grocery domain. We propose a novel architecture that integrates deep learning models
with traditional machine learning approaches to capture query nuances and deliver robust performance across diverse query
types and categories. Experimental evaluations conducted on real-life datasets demonstrate the efficacy of our proposed
solution in terms of both accuracy and scalability. The implementation of an optimized graph-based architecture utilizing
the Ray framework enables efficient processing of high-volume traffic. Our ensemble approach achieves an absolute 2%
improvement in accuracy over the best individual model. The findings underscore the advantages of combining diverse
models in addressing the complexities of e-commerce query understanding.

Keywords
Query classification, Query understanding, Distributed and scalable machine learning.

1. Introduction
Accurately understanding and classifying user queries
is crucial for providing a seamless shopping experience
by boosting the product search results relevance in e-
commerce [1]. Query understanding enables e-commerce
platforms to interpret users’ intents, retrieve relevant
products, and personalize the user’s journey through the
shopping experience. However, the task of query under-
standing in e-commerce presents several challenges due
to the diverse nature of queries, the large-scale product
catalogs, and the need for efficient processing of high-
volume traffic with noisy behavioral signals [2, 3].

Query understanding in e-commerce involves multiple
sub-tasks, such as query classification, entity recognition,
and intent detection. Query classification aims to cate-
gorize user queries into predefined product categories,
facilitating improved product retrieval and ranking [4, 5].
Entity recognition identifies key information within the
query, such as brand names, product attributes, and nu-
merical values, which can be used to refine the search
results [6]. Intent detection focuses on understanding
the user’s underlying goal, such as product discovery,
comparison, or purchase [7].

One of the primary challenges in query understanding
is the inherent ambiguity and diversity of user queries.

CLiC-it 2024: Tenth Italian Conference on Computational Linguistics,
Dec 04 — 06, 2024, Pisa, Italy
†

Work done when at VUI, Inc.
$ difabbrizio@gmail.com (G. Di Fabbrizio);
stepanov.evgeny.a@gmail.com (E. Stepanov);
ludovico.frizziero@gmail.com (L. Frizziero);
filippotessaro96@gmail.com (F. Tessaro)
� https://difabbrizio.com/ (G. Di Fabbrizio)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

E-commerce queries are often short, lacking context, and
can have multiple interpretations [8]. Moreover, the
large-scale product catalogs in e-commerce platforms,
spanning thousands of categories and millions of prod-
ucts, pose a significant challenge in accurately mapping
queries to relevant categories and products.

Various approaches have been proposed to address
these challenges, leveraging traditional machine learning
techniques and deep learning models. Rule-based sys-
tems and keyword matching have been widely used for
query classification and entity recognition [9]. However,
these approaches often struggle with the variability and
complexity of natural language queries. Different query
intents require different algorithms to yield optimum re-
sults [10]. Queries can be classified into navigational (e.g.,
product category, brand, title) and informational (e.g.,
product-related questions). While navigational queries
require exact matching to catalog products, informational
queries necessitate applying more complex understand-
ing techniques.

Another critical aspect of query understanding in e-
commerce is efficiently processing high-volume traffic.
E-commerce platforms receive millions of queries daily,
requiring scalable and real-time query understanding
systems. Distributed computing frameworks, such as
Apache Spark and Ray, have been employed to paral-
lelize query processing and handle the massive scale of
e-commerce data [11, 12].

In this paper, we propose an ensemble approach for
query understanding in e-commerce, combining deep
learning models and traditional techniques. Our ap-
proach leverages the strengths of both deep learning,
such as DistilBERT [13], and traditional models, includ-
ing logistic regression and rule-based systems. By in-
tegrating these diverse models, we aim to capture the

mailto:difabbrizio@gmail.com
mailto:stepanov.evgeny.a@gmail.com
mailto:ludovico.frizziero@gmail.com
mailto:filippotessaro96@gmail.com
https://difabbrizio.com/
https://creativecommons.org/licenses/by/4.0

Pacific chicken broth organic gluten free

Brand Nutrition

Entities

pantry>>soup Product Nutrition

Category

(a) Query understanding parsing (b) Search results

Figure 1: Query understanding parsing example with search results leveraging the query understanding signals

nuances of user queries and provide robust performance
across various query types and categories.

We introduce an optimized graph-based architecture
based on the Ray framework [12], enabling efficient pro-
cessing of high-volume traffic and ensuring scalability.

2. Query understanding ensemble
architecture

In this paper, we focus on navigational queries and clas-
sify them into product taxonomy categories while apply-
ing named entity recognition (NER) to capture relevant
product attributes, such as Brand, Nutrition, Flavor, and
numeric attributes like quantities and measurements. Fig-
ure 1 shows a typical example of a navigational search
query in an e-commerce grocery domain where the query
“Pacific chicken broth organic gluten free” is parsed into
its attributes and categorized into its taxonomy label.

Classifying user queries into product taxonomy cate-
gories is a typical document classification problem that is
complex and actively researched. The problem is compli-
cated by the nature of available data, which can be either
product descriptions with user-provided categories or
user queries associated with catalog categories from user
click-stream data. Products in the catalog are described
in terms of attributes with associated values, and a subset
of this mapping constitutes a set of entities that should
be identified to build a search query and provide better
search results.

Due to the rate of change in e-commerce, the classi-
cal approach of query annotation and model training

is prohibitive. Consequently, the query understanding
problem is cast as a document classification problem for
matching user queries to the product taxonomy tree (cat-
egories) and a sequence labeling problem for entities of
interest. For each problem, we propose using an ensem-
ble approach with multiple models having different label
sets and relations. Specifically, we predict two levels of
the product taxonomy tree (L1 and L2) and extract the
corresponding entities mentioned in the queries. Each
level is predicted by an ensemble of models composed of
business rules and machine learning models. Similarly,
different machine learning and rule-based models are
used to extract entities of interest.

2.1. Query understanding pipeline and
ensemble components

The query understanding pipeline’s classification and
entity extraction components are trained and tested on
pre-processed user queries. Common text pre-processing
steps are applied, including spaCy’s tokenization, lower-
casing, and number normalization [14].

The classification ensemble consists of business rules,
implemented as a lookup table, and two machine learning
models: logistic regression and DistilBERT. DistilBERT
is a compressed version of BERT [15] that retains 97%
of the original model’s performance while being 40%
smaller and 60% faster at inference time. The key idea is
to leverage knowledge distillation during the pre-training
phase to learn a compact model that can be fine-tuned for
downstream tasks. Integrating DistilBERT into a query
understanding pipeline, alongside business rules and lo-

gistic regression, enhances the system’s accuracy and
robustness.

The entity extraction ensemble comprises: (1) a condi-
tional random fields model; (2) a catalog-based lookup
table to extract Brand, Flavor, and Nutrition; and (3) a rule-
based Duckling library1 to extract numerical entities such
as Price and Quantity.

2.2. Classification decision fusion
In our ensemble learning scenario, the models are trained
on different data and have different, potentially over-
lapping label spaces, unlike typical ensemble learning,
where the same data is used to train all models. Due to
the label space differences, decision fusion is performed
on the predictor-by-label prediction matrix of confidence
scores rather than using a simple majority voting strategy.
Rule-triggered hypotheses are assigned to a confidence
score of 1.0 taking priority on model-based predictions.

The decision fusion process takes a matrix of confi-
dence scores as input and outputs a vector of aggregated
confidence scores. The label space difference is addressed
by applying a max operation on the column of predic-
tion scores per label, ignoring the values with respect to
the label space membership. Taking the maximum score
per prediction approximates the product rule [16]. The
final label is decided as the 𝑎𝑟𝑔𝑚𝑎𝑥 of this confidence
score vector. Unlike voting-based decision fusion, such
an approach allows aggregation of decisions from rules
and any number of predictors.

2.3. Entity span consolidation
Span consolidation aggregates entity extraction hypothe-
ses from one or several entity extractors into a shallow
parse containing only non-overlapping spans. By default,
this process is performed for spans from the same model,
but it can also be enabled for an ensemble of extractors.

Inspired by [17], the span consolidation is performed
in three steps: (1) Identity consolidation: Resolves identi-
cal spans by keeping the span with higher confidence, or
randomly if confidences are equal; (2) Containment con-
solidation: Resolves spans contained within each other
by keeping the longer span, i.e., the one that contains
the other; (3) Overlap consolidation: Resolves overlap-
ping spans by keeping the longer span, or alternatively
merging them and assigning the label of the longest span.
Priority consolidation can be used to give higher weights
to predictions from extractors with higher confidence.

The decision fusion and span consolidation are gen-
erally applied as the final step of the query understand-
ing pipeline to yield hypotheses containing only a non-
overlapping set of entities and a single classification pre-
diction per level, as described in Section 4.
1https://github.com/facebook/duckling

3. Models and ensemble
evaluation

The engine’s configuration represents the ensemble as
a sequence of operations, called nodes, organized into
a graph. The edges of this graph represent the interde-
pendencies between nodes. The engine organizes and
dispatches computations to maximize parallelism. Ma-
chine learning models for query classification are trained
on product catalog data and tested on user queries, ensur-
ing equal representation of head, torso, and tail queries
in terms of frequency. Table 1 shows the sizes of the
training and testing data, and the output categories. We
predict two levels of product taxonomy: L1 with 17 cate-
gories and L2 with 169 categories. However, not all L1
categories have L2 labels, making the L2 sets subsets of
the L1 data. The NER test set is a subset of the manually
annotated test data for non-numerical entities.

The performance evaluation of the component models
and the ensemble utilizes precision, recall, and F1-score
metrics. For multi-class classification tasks, we report
accuracy along with macro-averaged precision, recall,
and F1-score to account for dataset imbalance. Entity
extraction performance is assessed using micro-averaged
metrics and token-level accuracy, adhering to CoNLL-
style evaluation protocols.

To quantify the efficacy of the model ensemble, we con-
ducted a comparative analysis against logistic regression
and DistilBERT for level one predictions, with results
presented in Table 2. DistilBERT demonstrates superior
performance compared to logistic regression across all
metrics. The ensemble model, however, consistently out-
performs both individual models.

Consequently, the query understanding system adopts
the ensemble approach in lieu of individual models. Rule-
based components are excluded from this evaluation due
to their limited data coverage and restricted label subsets.

Level two models show similar performance patterns
to level one, though with lower performance due to the
larger label space and fewer training documents per label.
Entity ensemble performance aligns with other ensem-
bles, favoring precision.

While the ensemble approach demonstrates improved
performance, it faces challenges with certain query types.
Extremely short queries (e.g., "chips" can refer to potato,
tortilla, or chocolate) can be ambiguous without con-
text. Highly ambiguous queries (e.g., "greens") may span
multiple categories within the grocery domain. Novel
products or brands not present in the training data pose
difficulties. Complex, multi-intent queries (e.g., "organic
gluten-free pasta sauce and whole grain spaghetti") can
lead to misclassifications or incomplete entity extraction.

Future work could explore incorporating user session
data or personalization techniques to provide additional

https://github.com/facebook/duckling

Table 1
Dataset sizes used to train and test components of the ensemble

Training Testing Labels

Level 1 230,463 5,445 17
Level 2 212,087 4,486 169

NER 17,862 544 3
Brands Lookup 9,924 – 1

Table 2
Models and ensemble performance

Model precision recall f1-score accuracy

L1 DistilBERT 0.77 0.77 0.77 0.81
L1 Logistic Regression 0.76 0.70 0.73 0.75

L1 Model Ensemble 0.79 0.79 0.79 0.82
L2 Model Ensemble 0.68 0.67 0.66 0.70
Entity Ensemble 0.83 0.59 0.69 0.74

context for ambiguous queries and improve handling of
out-of-vocabulary terms and multi-intent queries.

4. Graph-based architecture for
scalable processing

Query understanding systems in e-commerce search en-
gines must generate real-time responses within strict
service level agreements (SLA). They execute complex
logic involving different models interacting both in series
and parallel.

Our engine is constructed as a sequence of operations
(nodes) arranged in a graph showing their interdepen-
dencies (edges). Like neural networks, the graph-based
engine organizes and dispatches each computation to
maximize parallelism.

Parallelization occurs at multiple levels, including
inter-operation parallelism and entire graph replicas, de-
pending on deployment requirements. Each operation
within the graph is a complex model component, requir-
ing specific optimization strategies, such as data vec-
torization and memory sharing, to optimize the overall
graph structure.

We represent the graph using the notation node:
[arg1, arg2, ..., argN], where node requires
incoming edges from arg1 through argN. The full con-
figuration of the graph can be seen in Appendix A

The engine processes the notation by following these
steps: First, it optimizes the graph by joining (inlining)
nodes based on certain criteria, which increases parallel
operations as much as possible. Next, it decides how
many replicas of the graph to run on a single physical

server. Each node is then mapped to a separate system
process using the Actor model [18] for inter-process com-
munication, with message passing between processes
handled using Ray [12].

Each node is initialized by loading the models into
memory, leveraging shared memory and copy-on-write
primitives provided by the server’s operating system.
Each node is loaded only once, and subsequent processes
assigned the same node reference the original memory.
Since the models are used for inference, not training,
there are no write operations, reducing memory foot-
print and improving loading times. Finally, the batching
service handles the backpressure control system and the
REST API for listening to incoming requests.

At startup, the engine performs several optimizations
on the graph topology. The simplest is graph culling,
removing nodes that do not interact with others. Each
node’s expected computational burden can be specified.
Simple nodes (e.g., string regex preprocessors) are less
resource-intensive than full neural network nodes. The
engine modifies the graph by combining nodes or inlining
to facilitate parallel operations and minimize costly inter-
process communications. This results in lighter nodes
being replicated multiple times and fused into heavier
nodes, each mapped to a single system process.

After inlining, the engine performs graph linearization,
converting the graph into a linear sequence, where each
node depends only on preceding nodes, not subsequent
ones. The engine dispatches nodes in order, synchroniz-
ing results only when necessary. This strategy minimizes
pauses and maximizes parallelism. Nodes with a higher
computational burden are prioritized, reducing the need
for the backpressure control system, leveraging the fact

 Optimized graph

 Full graph

User Query

Fusor L1

ENDFuse ALL

RulesSklearn L1TF-IDF L1

Preproc

Distilbert L2

Spacy

Duckling

TF-IDF L2 Sklearn L2

CRF

Distilbert L1

User Query END

Distilbert L1

Preproc | TF-IDF L1 | Sklearn L1

Preproc | Duckling

Preproc | Spacy

Preproc | TF-IDF L2 | Sklearn L2

Distilbert L2

CRF

Fusor L1 | Rules | Fuse ALL

Node's computational burden light normal heavy

Figure 2: Visualization of the ensemble as a computational graph. (Top) The graph as defined in Appendix A. (Bottom) The
graph after optimization by the engine.

that CPU and data transmission tasks are handled by
separate CPU circuitry.

Query understanding systems receive hundreds of in-
dividual requests per second. Processing a single request
is expensive due to inter-node communications. Batch-
ing multiple requests reduces overhead and enables vec-
torization, leveraging hardware primitives for efficient
processing. The batching algorithm uses two thresholds:
batch size and waiting time for further samples. This
balances server resource utilization and processing time.

Lastly, the engine addresses CPU oversubscription [19],
which occurs when parallel execution threads exceed
available CPU cores, leading to overhead from context
switching. The backpressure control system ensures no
more than 𝑁 nodes run in parallel, enhancing perfor-
mance by reducing oversubscription. The number 𝑁 de-
pends on available CPU resources and the code executed
within each node. A simple formula for determining 𝑁
is:

𝑁 =

⌊︂
𝑀𝑐𝑝𝑢

max𝑖∈𝑛𝑜𝑑𝑒𝑠 (𝑡ℎ𝑟𝑒𝑎𝑑𝑠𝑖)

⌋︂
+ 1 (1)

where 𝑡ℎ𝑟𝑒𝑎𝑑𝑠𝑖 is the number of threads or processes
that an individual node can utilize independently, and
𝑀𝑐𝑝𝑢 denotes the available CPU cores on the server.

5. Performance analysis at scale
Multiple tests were conducted using different AWS2 EC2
instances on the engine described in Section 4 and the en-
semble configuration as in Appendix A. The optimal bal-
ance between cost, latency, and throughput was achieved
with the m6i.2xlarge instance, which features 8-Cores
Intel Xeon vCPU @ 3.5GHz, for which we report the
results.

The test’s target SLA stipulated that response times
for 99% of requests should remain below 100ms.

All tests initiate a single instance of the engine with a
graph replication factor of one3. Another server, which
hosts the client simulator implemented using a Python
package called Locust, is instantiated. Both servers share
the same AWS network. The simulator issues multiple
queries to the engine’s server, each randomly sampled
from a dataset of actual queries over a sustained duration
of 30 seconds. The rate of each request follows an expo-
nential distribution with a rate of 𝑇 requests per second,
mimicking a Poisson process, a common model for traffic
patterns.

Table 3 reports the execution times of each node, along

2https://aws.amazon.com/
3Replication factors greater than one were also tested, but they
caused immediate CPU oversubscription problems, as anticipated.
The SLA targets were unattainable without resorting to costly
GPUs.

https://aws.amazon.com/

Table 3
Quantiles for 𝑇 = 30𝑡𝑝𝑠, times are in milliseconds. Nodes are sorted from fastest to slowest.

name 50% 95% 99%

preprocessor 0.05 0.06 0.07
fusor l1 0.38 0.53 0.58
fuse all 0.58 0.95 1.11
rules 0.87 1.29 1.56
crf 0.94 1.35 1.96
tfidf l2 1.36 2.39 5.22
tfidf l1 1.41 2.29 4.75
sklearn l1 1.62 2.68 4.86
duckling 2.80 11.95 35.71
spacy 12.87 24.70 33.68
distilbert l1 14.77 27.27 39.20
distilbert l2 14.90 27.75 37.58
sklearn l2 17.40 29.53 39.93
main loop 53.23 142.63 206.22
rest api 58.57 154.50 219.90

name 50% 95% 99%

preprocessor 0.05 0.06 0.07
fusor l1 0.40 0.66 0.83
fuse all 0.59 1.16 1.65
rules 0.84 1.33 1.70
crf 0.96 1.62 2.01
tfidf l2 1.39 2.03 4.88
tfidf l1 1.43 2.05 3.88
sklearn l1 1.64 2.53 5.81
duckling 3.33 18.59 30.84
spacy 12.33 18.68 25.42
sklearn l2 15.71 18.99 22.87
distilbert l2 15.44 27.49 36.29
distilbert l1 15.60 27.34 37.23
main loop 30.51 41.18 51.74
rest api 55.85 84.35 92.82

Batching disabled Batching enabled

with the main engine loop responsible for scheduling
them and the outer REST API handling incoming requests
and facilitating the connection between the engine and
the outside world. The runtime of each individual node
must be strictly shorter than the main engine loop, repre-
senting the actual time taken for parallel graph execution.
Node runtimes do not consider inter-process communi-
cation, which is accounted for in the main loop. On the
other hand, the Rest API contributes to the main loop by
including the time required to handle the HTTP connec-
tion with the requesting client. The outer Rest API time
must stay below 100ms @ 99% percentile to comply with
the target SLA.

When batching is disabled, at the given rate 𝑇 , new
requests arrive while the server is still processing pre-
vious ones. These requests are immediately dispatched,
leading to CPU oversubscription, which slows down all
requests. This effect tends to cascade, as the increased
processing time makes it more likely that other requests
will arrive, further slowing the system.

When batching is enabled, the engine pauses to accu-
mulate requests into a batch until thresholds of 5 sam-
ples or 50𝑚𝑠 are met. Given each request arrives every
1/𝑇 ≈ 30𝑚𝑠, the average batch size is around 1.5 sam-
ples. Therefore, vectorization alone cannot explain the
server’s ability to meet the target SLA. The process un-
folds as follows: (1) the first batch is dispatched for pro-
cessing, (2) for the next 50𝑚𝑠, new requests are queued
into a new batch while (3) the engine likely completes the
first batch within 51.7𝑚𝑠 (with 99% probability), (4) the
second batch is then dispatched, utilizing just released
resources. Thus, batching acts as backpressure control

on cheaper hardware without a GPU and at low rates of
𝑇 . In production, multiple instances would handle fluctu-
ating traffic, making batching efficient for scaling while
meeting the SLA. The optimal batching period should
match the main loop time @ 99%, which is around 50𝑚𝑠
in this case.

From a single request’s perspective, with 𝑇 = 30𝑡𝑝𝑠,
batches are dispatched precisely every 50𝑚𝑠, meaning
requests encounter a uniform distribution over this inter-
val with an average wait of 25𝑚𝑠 in the batch queue. The
entire batch is then processed, typically taking 𝑋 time to
complete before the response is extracted and forwarded
through the HTTP channel, taking an additional 𝑌 . Em-
pirically, 𝑋 represents the main loop runtime, averaging
around 30𝑚𝑠 @ 50%. The Rest API, implemented using
FastAPI4, has been benchmarked to yield a duration of
𝑌 ≈ 2− 5𝑚𝑠, giving us

REST API @50% = 25ms + 30ms + 2ms ≈ 56.25ms

For REST API @ 99%, the wait time is always 25𝑚𝑠
on average, but 𝑋 and 𝑌 change accordingly, giving
approx 90− 95𝑚𝑠.

6. Conclusion and future work
This paper proposed a novel ensemble approach for query
understanding in e-commerce, combining deep learning
models like DistilBERT with traditional techniques like

4https://fastapi.tiangolo.com/

https://fastapi.tiangolo.com/

logistic regression and rule-based systems. The ensem-
ble architecture aimed to capture the nuances of user
queries and provide robust performance across query
types and categories. Data augmentation techniques
were employed to improve the DistilBERT model’s han-
dling of brands, misspellings, and short queries. An opti-
mized graph-based architecture using the Ray framework
enabled efficient, scalable processing of high-volume traf-
fic.

While the ensemble performed well, there are limita-
tions to address in future work. The system focused only
on navigational queries for product categorization and
entity extraction. Extending it to handle informational
and other query types could further improve relevance.
Exploring more advanced data augmentation, model com-
pression, and hardware acceleration techniques could
enhance accuracy and efficiency.

The query understanding ensemble demonstrated
the value of combining diverse models and leverag-
ing distributed computing frameworks for scalability
in e-commerce search engines. E-commerce platforms
can benefit from adopting similar, ensemble-based ap-
proaches customized to their query traffic and product
data. The architecture enables efficient real-time query
processing while meeting strict latency requirements,
critical for delivering a seamless shopping experience.

7. Appendix

A. Graph configuration
In our query understanding system, the relationships
between various models and preprocessing components
are organized within a graph-based architecture. This
architecture plays a crucial role in managing the interde-
pendencies between different models, ensuring efficient
computation and scalability.

The graph representation is designed to handle the
integration of multiple machine learning and rule-based
models while facilitating optimized parallel processing.
Each key in the graph corresponds to a node, which
indicates a component or model, and the associated value
is a list of other nodes that provide input to it. This
differs from traditional adjacency lists, where the focus
is on child nodes. Instead, in our graph, the value lists
contain ancestor nodes, indicating which components
feed information into the current node.

A key aspect of this architecture is that certain el-
ements, such as user_query, are considered implicit
nodes representing external inputs to the system. These
external inputs play a foundational role in initiating the
data flow throughout the graph. The architecture is
designed to handle multiple outputs, listed within the
outputs key. This is not a graph node but serves as an

indicator to the engine of what to select as the final result.
The output key is also vital for the process of graph topol-
ogy optimization and linearization described in Section 4.
This representation not only makes it easier to track data
flow but also helps optimize the query understanding
ensemble for real-time processing in e-commerce envi-
ronments.

Figure 3: Graph Representation of Query Understanding
Ensemble

execution_graph:
preprocessor: [user_query]
distilbert_l1: [user_query]
distilbert_l2: [user_query]
tfidf_l1: [preprocessor]
tfidf_l2: [preprocessor]
vui_duckling: [preprocessor]
spacy: [preprocessor]
crf: [spacy]
sklearn_l1: [tfidf_l1]
sklearn_l2: [tfidf_l2]
fusor_l1: [distilbert_l1, sklearn_l1]
rules: [spacy, fusor_l1]
fuse_all: [

rules, crf, distilbert_l1, sklearn_l1,
distilbert_l2, sklearn_l2, vui_duckling

]
outputs: [user_query, preprocessor, parse]

Figure 3 illustrates the graph structure that defines the
Query Understanding Ensemble. The nodes represent
components that work together to process user queries
and extract meaningful insights. The graph starts with
preprocessing steps that normalize and clean the user in-
put. Subsequently, components such as DistilBERT and
TF-IDF are leveraged to extract semantic features and
contextual information. Additional models like the CRF
(Conditional Random Fields) and vui_duckling focus
on identifying specific entities such as brands, quantities,
and attributes.

The outputs from these models are fused to-
gether through specific nodes such as fusor_l1 and
fuse_all, which combine signals from the intermedi-
ate models based on confidence scores and rule-based
decisions. The final outputs represent the processed user
query, refined and enriched through multiple layers of
analysis, ready for downstream tasks such as categoriza-
tion and search relevance adjustments.

This architecture’s flexibility and efficiency enable it
to handle the complexities of e-commerce queries in real
time while supporting high-volume traffic and diverse
query types. It also lays the groundwork for the perfor-
mance optimizations and parallel processing strategies
outlined in Section 4.

References
[1] H. Deng, Y. Zhang (Eds.), Query Understanding

for Search Engines, 1st ed., Springer, 2020. doi:10.
1007/978-3-030-58334-7.

[2] S. Jiang, Y. Hu, C. Kang, T. Daly, D. Yin, Y. Chang,
C. Zhai, Learning query and document relevance
from a web-scale click graph, in: Proceedings
of the 39th International ACM SIGIR Conference
on Research and Development in Information Re-
trieval, SIGIR ’16, Association for Computing Ma-
chinery, New York, NY, USA, 2016, p. 185–194.
doi:10.1145/2911451.2911531.

[3] P. Nigam, Y. Song, V. Mohan, V. Lakshman, W. A.
Ding, A. Shingavi, C. H. Teo, H. Gu, B. Yin, Semantic
product search, in: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’19, Association for
Computing Machinery, New York, NY, USA, 2019,
p. 2876–2885. doi:10.1145/3292500.3330759.

[4] Y.-C. Lin, A. Datta, G. Di Fabbrizio, E-commerce
Product Query Classification Using Implicit User’s
Feedback from Clicks, in: 2018 IEEE International
Conference on Big Data (Big Data), 2018, pp. 1955–
1959. doi:10.1109/BigData.2018.8622008.

[5] G. Di Fabbrizio, E. Stepanov, F. Tessaro, Extreme
Multi-label Query Classification for E-commerce,
in: eCom’24: ACM SIGIR Workshop on eCommerce,
July 18, 2024, USA, 2024.

[6] J.-W. Ha, H. Pyo, J. Kim, Large-scale item cat-
egorization in e-commerce using multiple recur-
rent neural networks, in: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’16, As-
sociation for Computing Machinery, New York,
NY, USA, 2016, p. 107–115. doi:10.1145/2939672.
2939678.

[7] Y. Qiu, C. Zhao, H. Zhang, J. Zhuo, T. Li, X. Zhang,
S. Wang, S. Xu, B. Long, W.-Y. Yang, Pre-training
Tasks for User Intent Detection and Embedding Re-
trieval in E-commerce Search, in: Proceedings of
the 31st ACM International Conference on Infor-
mation & Knowledge Management, CIKM ’22, As-
sociation for Computing Machinery, New York, NY,
USA, 2022, p. 4424–4428. doi:10.1145/3511808.
3557670.

[8] D. Shen, Y. Li, X. Li, D. Zhou, Product query classi-
fication, in: Proceedings of the 18th ACM Confer-
ence on Information and Knowledge Management,
CIKM ’09, Association for Computing Machinery,
New York, NY, USA, 2009, p. 741–750. URL: https:
//doi.org/10.1145/1645953.1646047. doi:10.1145/
1645953.1646047.

[9] B. Ramesh, Bhange, X. Cheng, M. Bowden, P. Goyal,
T. Packer, F. Javed, Named Entity Recogni-

tion for E-Commerce Search Queries, in: 2018
IEEE International Conference on Big Data (Big
Data), 2020. URL: https://api.semanticscholar.org/
CorpusID:219530417.

[10] M. Tsagkias, T. H. King, S. Kallumadi, V. Murdock,
M. de Rijke, Challenges and research opportunities
in ecommerce search and recommendations, SIGIR
Forum (2020).

[11] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi,
Apache spark: A big data processing engine, 2019
2nd IEEE Middle East and North Africa COM-
Munications Conference (MENACOMM) (2019) 1–
6. URL: https://api.semanticscholar.org/CorpusID:
211120979.

[12] P. Moritz, R. Nishihara, S. Wang, A. Tumanov,
R. Liaw, E. Liang, M. Elibol, Z. Yang, W. Paul, M. I.
Jordan, I. Stoica, Ray: a distributed framework for
emerging ai applications, in: Proceedings of the
13th USENIX Conference on Operating Systems
Design and Implementation, OSDI’18, USENIX As-
sociation, USA, 2018, p. 561–577.

[13] V. Sanh, L. Debut, J. Chaumond, T. Wolf, Distil-
BERT, a distilled version of BERT: smaller, faster,
cheaper and lighter, ArXiv abs/1910.01108 (2019).
URL: https://api.semanticscholar.org/CorpusID:
203626972.

[14] M. Honnibal, I. Montani, S. Van Landeghem,
A. Boyd, spaCy: Industrial-strength Natural Lan-
guage Processing in Python (2020).

[15] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT:
Pre-training of Deep Bidirectional Transformers for
Language Understanding, in: J. Burstein, C. Do-
ran, T. Solorio (Eds.), Proceedings of the 2019 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), Association for Computational Linguis-
tics, Minneapolis, Minnesota, 2019, pp. 4171–4186.
doi:10.18653/v1/N19-1423.

[16] J. Kittler, M. Hatef, R. Duin, J. Matas, On combining
classifiers, Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on 20 (2002) 226–239.

[17] F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu,
S. Vaithyanathan, An algebraic approach to rule-
based information extraction, in: 2008 IEEE 24th In-
ternational Conference on Data Engineering, IEEE,
2008, pp. 933–942.

[18] C. Hewitt, Actor model of computation:
Scalable robust information systems, 2015.
arXiv:1008.1459.

[19] C. Iancu, S. Hofmeyr, F. Blagojević, Y. Zheng, Over-
subscription on multicore processors, in: 2010 IEEE
International Symposium on Parallel & Distributed
Processing (IPDPS), 2010, pp. 1–11. doi:10.1109/
IPDPS.2010.5470434.

http://dx.doi.org/10.1007/978-3-030-58334-7
http://dx.doi.org/10.1007/978-3-030-58334-7
http://dx.doi.org/10.1145/2911451.2911531
http://dx.doi.org/10.1145/3292500.3330759
http://dx.doi.org/10.1109/BigData.2018.8622008
http://dx.doi.org/10.1145/2939672.2939678
http://dx.doi.org/10.1145/2939672.2939678
http://dx.doi.org/10.1145/3511808.3557670
http://dx.doi.org/10.1145/3511808.3557670
https://doi.org/10.1145/1645953.1646047
https://doi.org/10.1145/1645953.1646047
http://dx.doi.org/10.1145/1645953.1646047
http://dx.doi.org/10.1145/1645953.1646047
https://api.semanticscholar.org/CorpusID:219530417
https://api.semanticscholar.org/CorpusID:219530417
https://api.semanticscholar.org/CorpusID:211120979
https://api.semanticscholar.org/CorpusID:211120979
https://api.semanticscholar.org/CorpusID:203626972
https://api.semanticscholar.org/CorpusID:203626972
http://dx.doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1008.1459
http://dx.doi.org/10.1109/IPDPS.2010.5470434
http://dx.doi.org/10.1109/IPDPS.2010.5470434

	1 Introduction
	2 Query understanding ensemble architecture
	2.1 Query understanding pipeline and ensemble components
	2.2 Classification decision fusion
	2.3 Entity span consolidation

	3 Models and ensemble evaluation
	4 Graph-based architecture for scalable processing
	5 Performance analysis at scale
	6 Conclusion and future work
	7 Appendix
	A Graph configuration

