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Abstract
State-of-the-art automatic speech recognition systems based on End-to-End models (E2E-ASRs) achieve remarkable perfor-
mances. However, phenomena that characterize spoken language such as fillers (<eeh> <ehm>) or segmental prolongations
(the<ee>) are still mostly considered as disrupting objects that should not be included to obtain optimal transcriptions, despite
their acknowledged regularity and communicative value. A recent study showed that two types of pre-trained systems with
the same Conformer-based encoding architecture but different decoders – a Connectionist Temporal Classification (CTC)
decoder and a Transducer decoder – tend to model some speech features that are functional for the identification of filled
pauses and prolongation in speech. This work builds upon these findings by investigating which of the two systems is better
at fillers and prolongations detection tasks and by conducting an error analysis to deepen our understanding of how these
systems work.
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1. Introduction
In recent works on Automatic Speech Recognition (ASR)
systems based on the computing power of Deep Neu-
ral Networks (DNN), a great deal of effort is focused on
incrementing the systems’ performances by employing
increasingly complex, hence hardly interpretable, DNN
models that require huge amounts of data for the train-
ing, like End-to-End Automatic Speech Recognition (E2E-
ASR) models which represent the state-of-the-art. An
E2E-ASR model directly converts a sequence of input
acoustic feature vectors (or possibly raw audio samples)
into a series of graphemes or words that represent the
transcription of the audio signal [1], as represented in
figure 1. In contrast, traditional ASR systems typically
train the acoustic, pronunciation, and language mod-
els separately, requiring distinct modelling and training
for each component. These systems usually aim to ob-
tain speech transcriptions ‘cleaned’from phenomena that
characterise spoken language such as discourse mark-
ers, particles, pauses, or other phenomena commonly
referred to as ‘disfluencies’. Studies on the interpretabil-
ity of the dynamics underlying neural models showed
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Figure 1: E2E ASRs are based on an encoder-decoder archi-
tecture. The speech signal is fed to the encoder, producing an
encoded representation that contains the information needed
by the decoder to provide the sequence of words/characters/-
subwords and build the transcription.

that state-of-the-art systems based on End-to-End mod-
els (E2E-ASRs) can model linguistic and acoustic features
of spoken language, which can be investigated to explain
their internal dynamics. Several probing techniques have
been designed to inspect and better understand the in-
ternal behavior of DNN layers at different depths. With
these techniques, investigations on the internals of Deep-
Speech2 [2, 3] revealed the influence of diatopic pronunci-
ation variation in various English varieties and provided
evidence that intermediate layers contain information
crucial for their classification. Later, a study [4] on the
layerwise capacity to encode information about acoustic
features, phone identity, word identity, and word mean-
ing based on the context of occurrence highlighted that
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the last layer right before the decoding module retains in-
formation about word meaning information, rather than
local acoustic features and phone identity information
that are captured by the first layers and intermediate
layers respectively. Then, other studies have further in-
vestigated the capacity of state-of-the-art models to en-
code phonetic/phonemic information[5, 6], lexical tone
[7] and gender [8]. Finally, [9] investigated the inter-
nal dynamics of three pre-trained E2E-ASRs evidencing
the emergence of syllable-related features by training
an acoustic-syllable boundary detector. Following this
line of research, a recent study [10] investigated the abil-
ity of two types of pre-trained systems with the same
Conformer-based encoding architecture but different de-
coders – a Connectionist Temporal Classification (CTC)
decoder and a Transducer decoder – to model features
that distinguish filled pauses and prolongations in speech
and showed that, despite not being originally trained to
detect disfluencies, these systems tend to model some
speech features that are functional for their identifica-
tion. Rather than disregarding the ability of E2E-ASRs
to model the acoustic information tied to such speech
phenomena as a dispensable noise source, it could be
exploited to achieve different ends. On the one hand, it
could be used to obtain more accurate transcriptions that
provide better, or rather more faithful, representations
of the speech signal, which would also support linguis-
tic annotation processes. On the other hand, exploring
the systems’ modelling ability leads to deepening our
understanding of their underlying dynamics. In the last
20 years, disfluency detection tasks have been conducted
to improve speech recognition performances [11, 12] and
different recent approaches to filler detection achieve
rather high performances, see [13]. However, these in-
vestigations mostly concern filler particles and, to our
knowledge, no such system has been tested on Italian
data so far. The proposed work aims to build upon these
findings by investigating which of the two decoding sys-
tems is better at performing a detection task for fillers and
prolongations. Moreover, a quantitative and qualitative
error analysis is conducted to deepen our understanding
of the way these systems work.

2. Materials and Method

2.1. Data
In this study, we employed approximately 210 minutes
of expert annotated speech respectively divided into ∼
80 minutes of informative speech [14], 90 minutes of de-
scriptive speech [15] and approximately 40 minutes of
dialogic speech [16], that is dyads where two speakers
recorded on different channels interact. While the data
from [14] and [16] consists of speech produced by speak-

ers of the Neapolitan variety of Italian, the speakers from
[15] come from different Italian regions.

More specifically, the considered speech data include:
audio-visual recordings of guided tours at San Martino
Charterhouse (in Naples) led by three female expert
guides (CHROME corpus [14]), which consists of infor-
mative semi-monologic, semi-spontaneous speech char-
acterized by a high degree of discourse planning and an
asymmetrical relationship between the speakers; audio-
visual recordings of 10 speakers narrating ‘Frog Sto-
ries’from a picture book [15], which elicited unplanned
descriptive speech; four task-oriented dialogues from the
CLIPS corpus [16], which provides mainly descriptive
semi-spontaneous speech characterized by a low degree
of discourse planning and a high degree of collaboration
between the interlocutors.

2.2. Annotation
Filled Pauses (FPs), defined as non-verbal fillers realized
as vocalization and/or nasalization, and Prolongations
(PRLs), defined as marked lengthening of segmental mate-
rial [17, 18] were manually annotated along with pauses,
lexical fillers, repetitions, deletions, insertions, and sub-
stitutions following the annotation scheme described
in [19]. This is a multilevel annotation system devel-
oped to account for both formal and functional features
of phenomena used to manage the own speech produc-
tion. The identification of different types of phenomena
was based on a ‘pragmatic approach’[20], which means
that it did not rely on absolute measures but on percep-
tual judgments given the specific contexts of occurrence.
The reliability of the annotation and the Inter-Annotator
Agreement was evaluated by measuring Cohen’s 𝜅. It
yielded 0.92 for dialogic data and 0.82 for monologic data,
which stands for ‘high agreement’[21].

2.3. Data Preparation
The considered dataset has been prepared based on a set
of praat TextGrid annotation files indicating the speaker
and the type of disfluency according to the speech signal.
More specifically, considering only the PRLs and the FPs,
the resulting dataset has a dimension of 1900 segments.
For each segment, the contextual information preceding
and following the disfluency phenomenon has been con-
sidered, giving each segment a length of 4 seconds. Then,
based on the combination of the so-composed dataset
with each of the considered pre-trained models’ encoders
(details reported in Section 3.1), for each combination of
segment and on each intermediate encoding layer the
following elements were extracted:

• A sequence of intermediate layer emissions/embed-
ding representing the input segment in the layer’s



(a) Average Dynamic time warping distance measured between sequences of labels with standard error (shade).

(b) Average Weighted F1 measure measured between sequences of labels with standard error (shade).

Figure 2: Dynamic Time Warping distance (figure a) and Weighted F1 (figure b) for all the trained classifers. The x-axis
indicates the index (starting from index 0) of the intermediate layer from which the distilled features have been extracted to
train the corresponding classifier.

vectorial space. Each emission in the sequence
represents a portion of 40 milliseconds of the in-
put signal due to the considered model’s charac-
teristics.

• A sequence of labels associated with each se-
quence of emissions, indicating whether an inter-
mediate emission belongs to a particular class of
disfluencies (1 for FP and 2 for PRL) or not (label
0 if the segment does not belong to a disfluency).

The resulting dataset consists of pairs of sequences
of emissions (i.e., distilled features) and correspond-
ing labels identified by the model and the layer from
which they were extracted. Note that each sequence
of intermediate layer emissions has a length ℎ =
4𝑠𝑒𝑐𝑜𝑛𝑑𝑠/40𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠, as it represents the tempo-
ral succession of segments before, during, and after dis-
fluency phenomena. We use the term emission [10, 9] to
indicate intermediate layer neurons fire, instead of the
more commonly used term embedding [8], as the latter
is widely used to indicate the output of an entire module
rather than a layer.

3. Results

3.1. Disfluency Identification Through
Model Probing

Building upon recent studies that make use of probes to
better understand the internal behavior of pre-trained
E2E-ASR models’[9, 4, 3], we apply a similar approach to
investigate if and to which extent a pre-trained model (𝑚)
can codify disfluencies-related features in the encoding
module, even if they are not trained to do so. The em-
ployed approach is aimed at building specific classifiers
whose inputs are represented by intermediate emissions
of the considered model’s encoder layers (𝑙), combined
with the appropriate sequence of labels based on dataset
annotation. Internally, each classifier consists of a Long
Short Term Memory (LSTM) module followed by a Feed
Forward Neural Network (FFNN). Given that our prob-
lem can be related to sequence classification, the LSTMs
seem to be the most naturally suited model [22]; usually,
an LSTM consists of one computational unit that itera-
tively processes all input time series vectors. This unit



(a) CTC-based classifier with hidden size 640 trained on
distilled features from layer 18 (index 17 in F1,DTW
plots).

(b) RNN-T-based classifier with hidden size 640 trained on
distilled features from layer 16 (index 15 in F1,DTW
plots).

Figure 3: Confusion matrix for the best classifiers obtained for each of the considered decoding approaches.

comprises three gates processing one vector at a time and
combining it with information extracted from previous
vectors. One of the most crucial parameters for an LSTM
is the hidden layer, therefore we investigate the impact of
three different layer sizes (hidden-layer size, 𝑛), namely
160, 320 and 640. So, an LSTM-based classifier processes
a sequence of {𝑒𝑙,𝑚} emission vectors (each of length
ℎ) and produces a new sequence of vectors with size 𝑛.
The two sequences are aligned over time. At each time
step 𝑡, the FFNN produces a label indicating whether the
considered input represents a specific disfluency segment
(label 1 for filled pause or 2 for prolongation) or not (with
label 0) based on the LSTM hidden-layer output. In sum-
mary, we train and evaluate many different LSTM-based
disfluencies classifiers/detectors (𝐿𝑛,𝑚,𝑙) for all possible
𝑛, 𝑚, and 𝑙 combinations to search for the evidence of
disfluencies-related properties in the models’ decisions.

The goal is to explore which of the considered pre-
trained E2E ASR models, based on different decoding
systems, better encodes characteristics associated with
disfluent speech segments to perform a fillers and prolon-
gations detection task. To this end, two publicly available
[23] Conformer-based models [24] with 120 million pa-
rameters each, built with the NVIDIA Nemo toolkit and
differing only in the decoding strategy, were selected. On
the one hand, a Conformer-based model with a Connec-
tionist Temporal Classification (CTC) [25] decoder has
been considered, as the CTC is one of the most popular
decoding techniques. Such a decoding technique is a non-
auto-regressive speech transcription technique that col-
lapses consecutive, all-equal, transcription labels (char-
acter, word piece, etc.) to one label unless a special label
separates these. The result is a sequence of labels shorter
or equal to the input vector sequence length. Being non-
auto-regressive, it is also considered computationally ef-
fective as it requires less time and resources for training
and inference phases. On the other hand, a Conformer-
based model with the Recurrent Neural Network Trans-
ducer (RNN-T), commonly known as Transducer has been

considered. The RNN-T is an auto-regressive speech tran-
scription technique that overcomes CTC’s limitations,
being non-auto-regressive and subject to limited label se-
quence length. The Transducer decoding technique can
produce label-transcription sequences longer than the
input vector sequence and models inter-dependency in
long-term transcription elements. A Transducer typically
comprises two sub-modules: one that forecasts the next
transcription label based on the previous transcriptions
(prediction network) and the other that combines the
encoder and prediction-network outputs to produce a
new transcription label (joiner network). These features
improve transcription speed and performance compared
to CTC while requiring more training and computational
resources [26]. Note that both pre-trained models rely
on the same encoder architecture, but the Conformer-
CTC model has 18 encoding layers, while the Conformer-
Transducer encoder has 17 layers.

In this study, ∼ 100 classifiers (2 models * ∼17 lay-
ers * 3 classifier sizes) were trained to investigate which
of the considered pre-trained models, differing only by
the decoding approach, encodes enough information to
perform a disfluency detection task.

To evaluate the alignment between the output of the
classifier and the reference label sequence we employ the
Dynamic Time Warping Distance (DTW distance) [27],
reported in figure 2a. The DTW results highlight that lay-
ers closer to the decoding module seem to contain most
of the information needed to perform a correct detec-
tion of the considered disfluencies, obtaining an average
DTW distance of approximately 1.39 in all the cases, with
a considerably low standard error. Then, to evaluate the
capability of each classifier to provide a correct as well
as aligned labels sequence, we employed the weighted F1
measure, reported in figure 2b. Also in this case, F1 results
confirm that layers closer to the decoding module seem
to be those containing most of the information needed to
correctly identify the disfluency segment. The combina-
tion of F1 and DTW provides an integrated perspective
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Figure 4: The plots in (a) for CTC and (b) for RNN-T report the F1 measure related to the frequency of FP (yellow) and PRL
(purple). Scatterplots for CTC (c) and RNN-T (d) compare the duration of the PRL segments with the respective F1 measure.

on the system’s ability to classify and align segments
correctly. Finally, in Figure 3 (a and b), we report the con-
fusion matrix of the best classifiers obtained from each
considered model. On the one side, the CTC seems to
be better at discriminating non-disfluent segments (ND),
while showing the worst performance in disfluency iden-
tification. On the other side, the RNN-T-based classifier
shows considerable performance at identifying FPs and
is the worst in discriminating ND segments, while PRL
performance is comparable to the CTC classifier. Both
matrices highlight that the most difficult disfluency phe-
nomena to classify are prolongations, which is the focus
of our preliminary exploratory error analysis.

3.2. Qualitative Analysis
The qualitative analysis is based on the best classifier
for each of the considered models used to generate the
distilled features. In particular, for the CTC version, the
best classifier resulted in the one with 640 hidden neurons
trained on 18-th layer features. Among the transducer-
based versions, the one with 640 hidden neurons trained
on 17-th layer features emerged as the best version.

The visual inspection of the distribution of the consid-
ered phenomena highlights that for both the CTC (4a)
and the RNN Transducer classifiers (4b), FP phenomena
concentrate on higher F1 weighted values, whereas wider
distributions are observed for PRL phenomena, which
shows that both classifiers work better when dealing with

FP than for PRL phenomena. Focusing on the PRL in-
stances, a negative correlation is observed between the F1
weighted scores and PRLs’ duration (CTC non-recognized
r = - 0.91, figure 4c; RNN Transducer non-recognized r =
- 0.87, figure 4d).

The error analysis was supported by an auditory in-
spection of the unrecognized and misclassified samples
filtered based on the average DTW distance, namely,
1.39 for the Transducer-based and 1.40 for the CTC-
based classifier. Issues in PRL recognition mostly con-
cerned shorter instances, those characterized by peculiar
‘non-prototypical’phonation features (such as unsteady,
creaky phonation) and the alignment of PRL-predicted
occurrences. Also, several PRL phenomena were misclas-
sified as FP when occurring with monosyllabic words,
such as ‘o<oo>’, ‘un po<oo>’, ‘che<ee>’, ‘e<ee>’. In fact,
the phonetic realization of these instances is closer to the
ones that characterize FP for their vowel quality and as
being, to a certain extent, independent elements from the
phonetic environment

4. Discussion and Conclusions
In this work, we build upon a previous study that investi-
gated to what extent modern ASR E2Es encode features
related to disfluency phenomena, even if they are not
directly trained to do so. We showed that pre-trained
models with the same audio encoder but with two differ-
ent state-of-the-art decoding strategies (CTC and Trans-



ducer) capture disfluency-related features, especially in
the latest encoding layer, and both model features that
can be used for the identification and positioning of dis-
fluent speech segments [10]. Although there seems to be
a tendency to forget this information with subsequent
layers, as the trends for DTW (figure 2a) and F1-measure
(figure 2b) would suggest, the last layers, which are those
closest to the objective function represented by the de-
coding module, seem the most prone to retain character-
istics useful to locate and identify disfluency phenomena.
Interestingly, despite the differences between the two
decoding modules which are respectively non-recurrent
(CTC) and recurrent (RNN-T), the performances for the
chosen task are comparable. However, the confusion ma-
trices highlight that the CTC-based classifier performs
better in the disfluency feature discrimination task, while
the Transducer-based classifier more precisely identi-
fies filled pauses, which could be related to the scope
(recurrent/non-recurrent) of the objective function. The
results align with the literature that shows a strong sen-
sitivity to features concerning words and phone of the
layers closest to the encoder[4], while the layers clos-
est to the input are more sensitive to features related
to accent and local acoustic characteristics [3, 4]. It is
worth noticing that, in a recent work [9], sensitivity to
syllabic boundaries was found in layers 3-5, with a pat-
tern similar to the one shown in Figure 2 but without
the peak in the last layers. The reason can be found in
the fact that syllables and their boundaries do not have a
graphic distinction in the transcriptions, conversely, in
the case of disfluencies, there is a form of transcription
that identifies them within a language model.

The exploratory analysis of the errors highlighted
that prolongations are more difficult to detect than filled
pauses, which could depend on their being an integral
(though lengthened) part of ‘fluent’words while filled
pauses are mostly realized as independent elements. Also,
instances of prolongation are mostly non-recognized or
misclassified as filled pauses when characterized by pecu-
liar ‘non-prototypical’phonation features, such as creaky
phonations, or filler-like features, as in the case of mono-
syllabic word-final prolongations. Also, previous studies
on the segmental quality of prolongations in Italian [28]
showed that prolongations, especially when concerning
consonantal sounds, can be realised with schwa sounds
similar to those that characterize most filled pauses. This
filler-like quality could also be considered among the
underlying reasons for the negative correlation between
the evaluation metrics of prolongations misclassification
and their duration. Another possible motivation could
reside in a bias in the dataset combined with the classifier
architecture (LSTM), which easily recognises prolonga-
tions responding to a specific length pattern. This means
that the scarcity of longer prolongations hinders their
modelling leading to their misclassification.

These findings could be used to improve transcription
applications by enriching them with disfluency anno-
tation (including filler particles and prolongation phe-
nomena), which are still rather costly processes for stud-
ies concerning hesitation phenomena and (own) speech
management in typical as well as atypical speech (e.g.,
pathological or language learners’ speech. Indeed, an
immediate development of the described work consists
of increasing the capabilities of the pre-trained E2E-ASRs
by adding a simple disfluency identification module to
complement the existing decoder, thus enriching the re-
sulting transcriptions.

Our work is built upon unidirectional LSTMs rather
than on bidirectional LSTMs (BiLSTMs), which provide
better performance because the latter have slightly longer
inference times and require a larger amount of data, re-
sources, time to be trained and, most importantly, present
a more complex behaviour [29]. However, the introduc-
tion of different architecture modules like bidirectional
LSTM could improve the detection of prolongation disflu-
encies. This will be part of future developments focused
on performance and increased neural network complex-
ity.
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